

powerBridge Computer

powerBridge Computer

- Founded in 1993, Headquartered in Burgwedel / Hannover
- Distribution of computer boards and systems into telecom, industrial automation, traffic control, and defence applications
- World Leading Manufacturers:

ADLINK, Interface Concept, Interphase, Motorola Embedded Communication Computing Group, Schroff, TEWS, Thales Computers

- Products: Boards, Systems, Systemintegration, OEM-Solutions, Driver, Protocolls, Operating systems
- Standards: AdvancedTCA, VMEbus, CompactPCI, microTCA, AMC, PMC, IndustryPack

Boards & Systems for Industrial Applications

Industrial Standards for Embedded Computer

By Kay Klockmann

Industrial Bus Standards for Computer Systems

PCI-Bus (Peripheral Component Interconnect Bus)

Standardization: Through PICMG (PCI Industrial Manufacturers Group)
Bus Architecture: Parallel 1 to 8 Slots, 32-bit/64-bit, 33/66 MHz
Standards: PCI, cPCI, PICMG 2.16 / CompactTCA, PXI Measurement-Bus
Mezzanines: PMC, PrPMC, PTMC, PC104+, MiniPCI
Data Rates: 132 .. 528 MB/s

Standardization: Through VITA (VMEbus International Trade Association)
Bus Architecture: Parallel, 1 to 21 Slots, 8/16/32/64-bit
Standards: VMEbus, VME64, VME2eSST (VME320)
Data Rates: 10 .. 320 MB/s

Industrial Bus Standards for Computer Systems

AdvancedTCA (Advanced Telecommunication Computing Architecture)

Standardization:	Through PICMG
Bus Architecture:	Serial Communication over Ethernet, Infiniband, ATM, FC, 1 to 24 Slots
Data Rates:	up to 40 Gbit/s per Slot

MicroTCA (Micro Telecommunication Computing Architecture)

- Standardization: Through PICMG
- Defines a system architecture for AMC plugged into a backplane

AMC (Advanced Mezzanine Card)

Standardization:	Through PICMG	A
Bus Architecture:	Serial Communication over Ethernet, serial RapidIO, PCI Express (advanced switching),	FC
Data Rates:	up to 40 Gbit/s per Slot	

Comparison VMEbus, CPCI, µTCA, SMTCA

	VMEbus	CompactPCI	MicroTCA	Simple MicroTCA
Bus Architecture	Parallel	Parallel	Serial	Serial
System Architecture	Multi Master	Master/Slave	Multi Master, switched fabric	Multi Master, fixed connections
Interconnect	VME32, VME64, VME320, Ethernet	PCI (32/64-bit), Ethernet	PCI Express, Ethernet, serial RapidIO, FC, SATA, SAS	PCI Express, Ethernet, serial RapidIO, FC, SATA, SAS
Bandwidth	Up to 320 MB/s	Up to 500 MB/s	Up to 5 GB/s	Up to 5 GB/s
IPMI	No	Yes	Yes	Yes
Hot Swap	No	Yes	Yes	Yes
Power	Max. 93W	Max. 50/100W	20-80W	20-80W, low power option

Comparison ATCA vs. CPCI

PICMG 2.X Limitations

- Max. power per slot 50/100W (cTCA)
- Card format limits functions
- Rear I/O not usable for optical connections
- Weak connectors

PICMG 3.X Advantages

- Max. power per slot 200W
- Bigger form factor 8Ux280mm
- No dedicated rear I/O format
- Robust connectors

CompactPCI®

AdvancedTCA[™]

Comparison PMC vs. AMC

	PMC	AMC
Form Factor	Single & Double Wide	Single & Double wide
		Compact, Mid-size or Full-size
Connectors	Unshielded P1386	Shielded differential pairs
		(21 duplex ports)
Interconnect	PCI (66/64)	Ethernet (GbE, 10GbE,)
	PCI-X (133/64)	Fibre Channel, SATA, SAS,
	Ethernet	PCI Express, Serial RapidIO
Interconnect Speed	PCI: 1 – 4 Gb/s	1 to N+12.5 Gb/s
	Ethernet: 1 Gb/s	
IPMI	None	Yes
Hot Swap	Not available	Yes
Power	7,5 – 12 Watts	20/40/80 Watts
		C/DC, MS/DMS, FS/DFS

Standardization AMC

- AMC.0 (Advanced Mezzanine Module)
 - Defines a mezzanine building block approach for the addition of crucial functionality to a PICMG 3.0 carrier card available from a number of third party suppliers.
- AMC.1 (Advanced Mezzanine Module PCI Express and Advanced Switching)
 - Defines port usage for PCI Express and Advanced Switching environments on AMC.0
- AMC.2 (Advanced Mezzanine Module Ethernet)
 - Defines port usage for Ethernet on AMC.0
- AMC.3 (Advanced Mezzanine Module Storage)
 - Defines port usage for Fibre Channel, SATA or SAS on AMC.0
- AMC.4 (Advanced Mezzanine Module Serial RapidIO)
 - Defines port usage for Serial RapidIO on AMC.0

AMC Module Form Factors

- 6 different form factors are available
 - Compact (C)
 - Double Compact (DC)
 - Mid-Size (MS)
 - Double Mid-Size (DMS)
 - Full-size (FS)
 - Double Full-size (DFS)
- Modules depth 181,5 mm

AMC Benefits

- Modularity and flexibility
- Reduced development time and cost (COTS)
- Hot Swap support
- High Speed serial interconnect (LVDS)
- Includes IPMI (limited management functions)
- Max. 80W power dissipation
- Single 12VDC power supply

What is µTCA ?

constructed from plugging the hot swappable Advanced Mezzanine Cards into a chassis and backplane

µTCA in Industrial Applications

Advantages for Industrial Systems

- Small, high density form factor
- Easy service and upgrade
- Very good support for extended operating conditions
- High throughput backplane
- System management
- Platform for the next 10 years

Disadvantages

- The MCH has features that are not required in many applications the costs are inacceptable high
- The PM carries also features which create inacceptable costs
- To many options

Simple MicroTCA®

How to Use µTCA in Industrial Applications

What is 'Simple MicroTCA'?

Simple MicroTCA defines a reduced and clear functionality for a µTCA system, following these rules:

Simplifying, Cost Reduction, Full AMC Compability

The result: Cost reduction to 1/3 of a standard µTCA system

μTCA System without MCH and PM

Simple MicroTCA (SMTCA) describes a computer system with AMC module slots that can operate without MCH and PM

Differences between SMTCA and μ TCA

- 1. Dedicated slots for one CPU module and I/O modules
- 2. PCIe x1 links AMC I/O slots
- 3. Fixed connections, no switched fabric
- 4. Support of 8 AMC I/O slots
- 5. Cost optimized Simple MicroTCA Support Module (SSM) replaces MCH and PM functions
- 6. PM replaced by simple AC power supply, or DC/DC converter, or ext. 12V supply
- 7. No redundancy supported
- 8. Small power supply, optional standard power supply

Simple MicroTCA Support Module

Compute

Simple MicroTCA Backplane

AMC ports 12 to 20 are reserved for rear I/O

µTCA Chassis for Industrial Use

2U 19" Rack Mount Chassis with 8 Mid-Size Slots

No MCH slot, no PM slot, open frame AC PSU, front air inlet and rear air outlet, two hot-swap fan units, opt. DC PSU

Wall Mount Cube with 9 Mid-Size Slots

No MCH slot, no PM slot, open frame AC PSU, hot-swap fan unit, opt. DC PSU

2U Rack Mount Chassis, pBC

SMTCA Perfectly Supports Industrial Needs

- Cost reduction to 3.300 EUR for a basic SMTCA system with CPU module and power supply
- Applications in transportation, defense & aerospace, medical, robotics, and high-end machine control

Legals

PICMG, AdvancedTCA, ATCA, AdvancedMC, µTCA and their logos are trademarks of the PCI Industrial Computers Manufacturers Group

VITA, VMEbus, VME32, VME64, VME64x, VME320, 2eSST and their logos are trademarks of the VITA Standards Organisation

Simple MicroTCA, Simple μ TCA, and SMTCA are registered trademarks of powerBridge Computer

All other product or service names are the property of their respective owners

All specifications contained within this presentation are subject to change without notice

Thank you

